Journal Pre-proof NUCLEAR

ENGINEERING AND
OLOGY

A method of X-ray source spectrum estimation from transmission measurements
based on compressed sensing

Bin Liu, Hongrun Yang, Huanwen Lv, Lan Li, Xilong Gao, Jianping Zhu, Futing Jing =

PII: S1738-5733(19)30637-0
DOI: https://doi.org/10.1016/j.net.2019.12.004
Reference: NET 998

To appearin:  Nuclear Engineering and Technology

Received Date: 28 July 2019
Revised Date: 23 November 2019
Accepted Date: 3 December 2019

Please cite this article as: B. Liu, H. Yang, H. Lv, L. Li, X. Gao, J. Zhu, F. Jing, A method of X-ray
source spectrum estimation from transmission measurements based on compressed sensing, Nuclear
Engineering and Technology (2020), doi: https://doi.org/10.1016/j.net.2019.12.004.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published

in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2019 Korean Nuclear Society, Published by Elsevier Korea LLC. All rights reserved.

www.manaraa.com


https://doi.org/10.1016/j.net.2019.12.004
https://doi.org/10.1016/j.net.2019.12.004

A method of X-ray source spectrum estimation from transmission

measur ements based on compressed sensing

Bin Liu 3 Hongrun Yand, Huanwen LV, Lan Li? Xilong Gac?, Jianping Zhd, Futing Jing:
2 Science and Technology on Reactor System Design Technology Laboratory,
Nuclear Power Ingtitute of China, Chengdu, 610213, China
Abstract: A new method of X-ray source spectrum estimatioseddaon compressed sensing is
proposed in this paper. The algorithm K-SVD is #&aplfor sparse representation. Nonnegative
constraints are added by modifying thereconstruction algorithm proposed by Rosset and Zhe
estimation method is demonstrated on simulated tspégpical of mammography and CT. X-ray
spectra are simulated with the Monte Carlo coden@ed he proposed method is successfully applied
to highly ill conditioned and under determined mstiion problems with a good performance of
suppressing noises. Results with acceptable adeardMSE < 5%) can be obtained with 10%
Gaussian white noises added to the simulated erpatal data. The biggest difference between the
proposed method and the existing methods is thétipteuprior knowledge of X-ray spectra can be
included in one dictionary, which is meaningful fobtaining the true X-ray spectrum from the
measurements.
Keywords: X-ray source spectrum estimation; transmission oreasents; compressed sensing and
sparse representation

1. Introduction

Knowledge of X-ray spectrum is very important foetefmining the radiation dose, reducing
beam-hardening artifacts, and dual-energy mated@tomposition analysis of diagnostic X-ray
imaging and CT [1-2]. It is difficult to measureesprum from the X-ray tube directly due to the high
source intensity. The transmission method, whickolires a phantom of known dimensions and
compositions, is widely used for X-ray spectrumedetination for its simplicity and adaptability to a
large energy range of X-r§y-4]. The penetration rate of polychromatic X-rays through the material
with thicknesd. can be formulized as [4],

| Emax - /I(E r)dl
PE Proe =7~ = D(E)s(E)e* dE
0 Emn
Emax - u(E.r)d (1)
= [W(E)e®  dE

where Py is the noise added tin the experimental filgd,and! are incident and transmitted

photon intensitiesyM(E) denoteghe overall spectrum, which combines the X-ray sewpectruns(E)
and the detector respor3¢E).
Eqg. (1) can be converted into a linear systerdibgretization,
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P, tE, =D AW, 4=1,..M
p=1
A, :exp[—j,uq(Ep r)d
L

where £, is the noise term of the experimental dadas the total number of measurememiss the

)

number of samplings of the spectru;is the measurement matrix calculated from the linea
attenuation coefficients and thickness of the pbran&ndw, is the spectrum sampling.

To make it easier to discuss, Eq. (2) is wriitethe matrix form,

P+te=AW 3)
whereP is aMx1 vector consisting of the transmission dates aMx1 vector consisting of the noise
term of the experimental datd;is the measurement matrix with dimensionVfN ; andW is aNx1
vector consisting of the spectrum sampling.

Normally, M is of the order of dozens amdlis of the order of hundreds, which makes the X-ray
estimation problem stated in Eq. (3) is not onlycibnditioned, but also under-determined. Some
numerical methods have been proposed and appliethisoproblem. One of them is the EM
(expectation-maximization) method. The EM methodhimizes the Kullbeck-Liebler distance to the
transmission data. The positivity of the solutisrautomatically enforced and the prior informatien
often used as the initial guess [5]. The currenthods, including the EM method, focus mainly on the
illness condition of the problem. The prior infortioa is often used as the initial guess to stagt th
algorithm. Therefore, only single prior informati@man be used in one estimation. However, there
might be multiple guesses or predictions of thecBpen to be estimated. These guesses or predictions
can all be used as prior information. Thereforés fuite necessary to develop new estimation naetho
which not only focuses on the illness conditioritedf problem, but also on new ways of using therprio
information.

Compressed sensing (CS) theory, proposed by Donbhdao and Candes, is a new method to
reconstruct signals from significantly fewer samg8. The CS theory is considered as a breakthrough
of the Nyquist-Shannon sampling theory and is wideded in areas of medical imaging, analog-digital
conversion, computational biology and other aspf8]. The CS theory claims that the unique
solution can be obtained for the under determimetdlpm on some certain conditions.

In this paper, CS theory is introduced to solvelthder determined problem stated in Eq. (3). Part 2
presents the model, introducing CS theory to theyXspectrum estimation problem. Part 3 applies the
method discussed in Part 2 to simulated transmmssieasurements. X-ray spectra with an energy
range of mammography imaging and energy range ofi@Testimated respectively. Performances of
the method are evaluated, including the dependendhke prior information, noise suppression ahility
and the ability of using multiple prior information

2. The estimation method based on compressed sensing
2.1. Estimation model

As is discussed in part 1, the X-ray spectrummegion problem stated in Eq. (3) is under
determined so there is no unique solution. Howeaecording to the CS theory, the unique solution
can be obtained as long as the X-ray spectViim sparse (usually not) or can be presented dpdrge
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a linear combination of a complete basis, showBdgn(4),
wW=yg (4)
where? is a sparse basis matrix, which is also calleddtbgonary. The representative stated in Eq. (4)
is called a kind of sparse representation, throwbfch g is sparse and the problem has the unique
solution.
With the appropriate dictionatif and substituting Eq. (4) into Eq. (3), then wedyav

Pte=Xp (5)
whereX equalsA¥. Then the unique solution can be obtained by sghéq. (5), which is equivalent
to,

p=argmif ], st.[P-x4,<e ®

where ”[ﬂ]o denotes théy norm, which represents the number of non-zeroestri

Solving Eq. (6) is called reconstruction. Finathe X-ray spectrum can be obtained with appropriate
B, shown by Eq. (7),

W=Wp (7)

2.2. Yarse representation of X-ray spectrum

As discussed, the unique solution can be obtairsetbrag asW can be represented sparsely. So
choice of the dictionary is very important. Fourkasis, discrete cosine basis, and discrete wavelet
basis are widely used for sparse representatioimage processing and other aspects for their
mathematical completeness and easy to implement@pever, these methods are not adaptive and
not suitable for spectra estimation. Therefore,dintionary based on learning is considered. Giaen

set of training samplesf :{yi}i’\il’ the dictionaryD is searching for the best representation, as is
shown in Eg. (8),
. 2 .
”Q[{‘”Y'Dd‘z st. i, <t (8)
wherea is sparse coefficient arids the sparsity, namely the number of nonzerdeshofa.
To obtain dictionanD requires two processes: sparse coding and dictianalate. Sparse coding is
the process of computing the representation coeffiis based on the given samples and the dictionary

D. This process, commonly referred to as “atom degmsition”, requires solving the following
equation,

iy -Dar|* st. <t o

The dictionary update process is as follows: assooties andD are fixed. Consided, (one column
in D) and the corresponding coefficiemt (the kth row in ), the penalty term can be written as Eg.
(10),
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The K-SVD algorithm, which is a generalization ofnkeans (developed by Michal Aharon et al)
[10], is applied to update the learning dictionarythis paper. The K-SVD algorithm uses orthogonal
matching pursuit (OMP) algorithm, which is a greealgorithm that selects the dictionary atoms
sequentially, involving computation of inner protiibetween the signal and dictionary columns,
deploying least squares solvers for sparse codihly fnd SVD decomposition & is used to update
the dictionary. For the SVD decomposition finds thesest rank-1 matrix that approximatgs which
can minimizes Eq. (10) effectively. Restrictions matrix Y, D, anday are applied for enforcing the
sparsity constraints.

2.3. The reconstruction algorithm
Direct solution of Eq. (6) proves to be NP-hardcé@mmon solution is convex relaxation which
relaxes the o norm to the_; norm, shown in Eq. (11),

min|| 8], st.|P- XA <e (1)
Eqg. (11) can be written as Lagrange multiplier,
B(A) =argminP- XA, + |4, 12)

Eqg. (12) is the famous Lasso (least absolute shgaland selection operator) model, which consists
of a least square estimate antd;aorm penalty. The parametedenotes the penalty factor which can
be deemed as the weight between cost functionrenpednalty term.

A number of algorithms have been proposed for |lasdation. The algorithm used in this paper is
mainly based on the Matlab tool spaSM [12], whistbased on the method proposed by Rosset and
Zhu [13]. The algorithm uses Taylor expansionsh&f horm equations of the minimization problem
stated in Eq. (12) to get] 8 , shown in Eq. (13),

~ 71 . ~
04 (1) =-(2x3x, ) " mign(4, (1)) (13)
where A s called the active set, denoting indiceg torresponding to non-zero elements.

Eq. (12) is rewritten with expanded set pfvalues Iike,Bj :@ +,3_, where ,8: >0 and

,Bj_ >0, Oj . Considering the Karush-Kuhn-Tucker conditionstleé optimization problem, the
properties of the distangecan be obtained, shown in Eq. (14) and Eq. (138), [1
jOA - T: Y+y0p¥ =0, jOA (14)

joT —>A:‘(DL(,@('(HyD,é(k)))‘:(DL(ﬁ(k)+yD,@(k)))j‘, jO0A,iOT  (15)

where T is called the inactive set and denotes the compienfe A . Eq. (14) defines the distances
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{y} at which active variables hit zero and joih . Eq. (15) defines the distances at which inactive

variables join A . The smallest value)//y, is where the next event will happen.

With OB obtained in Eq. (13) ang/ obtained in Eq. (14) and Eq. (15), the coefficecan be
updated by,

I@(kﬂ) :ﬁ(k) +yminDlZ;(k) (16)

The algorithm proposed by Rosset and Zhu can dbledasso problem with high efficiency and
accuracy, as well as has the ability to suppressitiises. The only drawback is that it does nobreef
the non-negativity. So the method is modified iis thaper. The modification is simple, by which the
negative entries diV in Eq. (7) are set to be zeros to make sure sntrfighe final estimated X-ray
spectra (stated in Eq. (7)) are non-negative. Tow thart of the modified LASSO algorithm is
illustrated in Fig. 1. Steps 13 to 16 are the miedikteps.

I Initialize £ = 0, A= arg max |x'|1y|, Vﬁ! = —Sign(‘(:i}’) \7[‘3;‘ =0,k=0.
2:while 7 # @ do

3: ;V«zlllill‘:-.x—ﬁ:“/Vﬂ‘;"" |

o) (38 o) (38|

1(X‘+x‘)T(XVé\M)* (x\_x‘)T(le:}“j J
5 ;/:min{yc,yl‘

6: if y=y, then

7: Move jfrom AtoT

8:

9

S

7, =min_,

else
© Movei from 7 to A
10: end it »
llﬁ ﬁw.‘;—lw:ﬁu‘.\erﬁuw
Ak ) T - ALt

12: Vg :7(2X‘JX‘4) -s.lg,n([)"4 )
13: e :[)[}n‘.fl}
14: if H”“'“(p) <0,(p=1,.,N) then
15: W (p)=0
16: end
17: k=k+1
18:end while
19: Output the series of coefficients B = [ﬁ""" B J

Fig. 1 LASSO algorithm modified with non-negativedification

It is obvious to see from Eq. (12) that the accyraicthe reconstruction is highly depended on the
value ofi. The larger the value dfis, the sparser coefficient vecipis; while the smaller the value of
A is, the more convex the reconstruction processwiBich leads to higher accuracy of the
reconstruction. There are some criteria for tradifiythe sparsity and the accuracy, such as the
Akaike’s Information Criterion (AIC), Bayesian Inimation Criterion (BIC) and so on. In this paper,
the AIC criterion is applied.

The AIC of thekth iteration can be defined as [14],

AICY = H P-XxAY HZ +20°%df ¥ 17)

wheredf® is the degree of freedom, which is given by theber of non-zero elements fif and 02

represents the residual variance which can be etkfas,
1 2
o’ ==||P-X"P| (18)
n

whereX" is the Moore-Penrose pseudo-invers.of
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3. Simulation studies
3.1. Monte Carlo simulation of the source spectrum

X-ray spectra with an energy range of mammog@aphiaging and energy range of CT are both
studied in this section. In mammographic imagihg, X-ray energies are generally on the lower end of
the diagnostic imaging range, so the simulationsimers X-rays generated by Mo (molybdenum)
source and filtered by half a millimeter of alumimuwhile in CT application, the subjects often have
higher X-ray attenuation, therefore the simulatimmsiders X-rays generated by W (tungsten) source
and filtered by 1 cm of aluminum.

The X-ray source spectra used in this paper lhsnaulated with the Monte Carlo toolkit Geant4
[16-17]. The “G4UAtomicDeexcitation” class is imptented for simulating the production of X-rays
by electron source, and the standard EM (Electrgrtic) package is used for photo-electric effect
and Compton scattering of X-rays. Threshold cut® am is applied for both electrons and X-rays,
corresponding to energy cuts of 990 eV in molybaenaluminum, and tungsten. The simulation
results of X-rays generated by Mo source with areding voltage of 25 kV and X-rays generated by
W source with accelerating voltage of 140 kV arevah in Fig. 2. The peaks in the spectrum are
characteristic lines of Mo (17.443 keV and 19.68¥,kshown in Fig. 2a), and the characteristic lines
of W (58.5 keV and 61.7 keV, shown in Fig. 2b).

0.12 g T g T 0.07

0.06

=)

o

)
=
=3
wh

E
:

j=2
(=
=

Normalized spectrum
E bt B
(=]
(=2}
Normalized spectrum

=4
=1
3%

T

5 10 15 20 25 0 50 100 150

0
Energy/keV Energy/keV
(a) X-rays generated by Mo source (b) X-rays generated by W source

Fig. 2 X-ray source spectra obtained with Geantukition
The energy range of X-ray photons for mammographayging is from 3.5 keV to 25 keV, and the
energy range of X-ray photons for CT is from 9 ke\V141 keV. There are 140 energy bins for both
mammographic imaging and CT. The X-ray spectra shimwFig. 2 are used as the test spectra to be
estimated in this paper.

3.2. Design of the measurement matrix
The measurement matrix is obtained through two-ategge phantoms. Materials for the phantoms
are aluminum (Al) and carbon (C) for their differeattenuation levels. Description of the step
phantoms is listed in Table 1.
Table 1. Technical description of step phantoms

Phantom material Mass density Number of steps Minimum thickness Maximum thickness
(g/cn) (cm) (cm)
Aluminum 2.7 20 0.127 2.54
Carbon 1.6825 20 0.212 4.24
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As is discussed above, for both the mammograph&ging and CT problem, there are 140 energy
bins of X-ray spectrum and the number of equatie@®. The problem is highly under determined and
ill conditioned. The condition number of the systematrix A are in a magnitude of 10 (for
mammographic imaging) and #Qfor CT). The following part of this paper is thgplication of the
estimation method discussed in Part 2 to X-rayredton of mammographic imaging and CT.

3.3. The estimation results
3.3.1. Results of the mammographic spectrum

As is discussed above, the X-ray spectrum estimgioblem is an under determined and there must
be prior information to get the desired solution.study the dependence of the estimation accunacy o
the prior information, 4 dictionarie®y;, D1,, D13, andD,4 are tested respectively. The corresponding
training spectra are X-ray spectra simulated with dccelerating voltages of 25 kV, 24 kV, 23 kV and
22 kV. The estimation results are illustrated ig.R2. The accuracy of the estimation is evaluated b
MSE (Mean Square Error), which is described in #8),

MSEz\/i (VViEstimated_Vvi Exac)2 (19)
i=1

The X-ray spectrum can be estimated almost exadtije it can be represented sparsely enough,
shown in Fig. 2 (a). The accuracy drops while therpspectrum deviates from the spectrum to be
estimated. However, estimated results with accéptatcuracies can be obtained with sufficient prior
information.

0.12 012
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-:;-): 0.0% § 0.08 -
& &
;, 0.06 ’é 0.06
Z Z
E0.04 Eood
Z Z
0.02 002 -
0 “'//dw 0 _,.-""w 2
0 5 10 15 20 25 0 3 n 13 20 25
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(aPy (MSE: 1.4969E-9) ()., (MSE: 0.0111)
0.12 0.12
Exact —— Exact
covsnennens Estimated wo Estimated
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g 2
o n
B 0.06 T 0.06
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E 0.04 é 0.04
S =)
Z Z
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0 T i . o ekl =R
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(cP1s (MSE: 0.0323) ()14 (MSE: 0.0515)

Fig. 3 Estimated results with different prior spact
Normally, the transmission data are always contataih by the noises of the experimental ground,
which causes difficulty of the estimation. To stuthe noise suppression ability of the method,
estimation is carried out with 1%, 3%, 5%, and 18#%ussian white noises added to the transmission
data. DictionaryD;, is used for sparse representation. The estimatadts are shown in Fig. 4. While

www.manaraa.com



the accuracy drops as the level of noise growsgstienation method has a strong ability to suppress

noises. The X-ray spectrum can still be estimatél an acceptable accuracy (MSE<0.05) with 10%

Gaussian white noises added, shown in Fig. 4 (d).
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Fig. 4 Estimated results with different levels oises

The biggest difference between the estimation nuethmposed in this paper and the existing

estimation methods is the way using prior informatiThe current methods use the prior information

as the initial guess to start the algorithm. White method proposed in this paper uses the prior

information as the training samples for sparse esgmtation, which allows use of multiple prior

information. To verify this, estimation is carriedt and the estimated results are shown in Fighg.

dictionary Dys5 is used for sparse representation. Dictiorayy is obtained by the K-SVD algorithm

illustrated in Part 2 with X-ray spectra simulateith the accelerating voltages of 25 kV, 24 kV,ik8

22 kv, 20 kV and 18 kV respectively. The estimatiercarried out with 3% Gaussian white noises

added to the transmission data. The test spectraXamy spectra simulated with the accelerating

voltages of 24 kV,
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(a) 24 kV (MSE: 0.0031) (b) 23 kV (MSE: 0.0129)
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Fig. 5 Estimated results with multiple prior spectr
As is shown in Fig. 5, estimated results with atalkle accuracies can be obtained for their prior
information are included in the training matrix.i¥ls quite meaningful for multiple prior informati
can be included on one dictionary for sparse reprtasion.

3.3.2. Results of the CT spectrum

As is discussed in the former part, the estimatim@ihod discussed in Part 2 can be successfully
applied to X-ray spectrum estimation for mammogi@pmaging application. However, the X-ray
spectrum in CT application is quite different bathspectrum shape and energy range of X-rays. To
study the adaptability of the estimation method ¥iray spectrum of CT application is tested for
estimation. Firstly, 4 dictionarieB,;, D,,, D,s, and Dy, are tested respectively. The corresponding
training spectra are X-ray spectra simulated whith accelerating voltages of 140 kV, 130 kV, 120 kV
and 110 kV. The estimated results are shown inéig.
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Fig. 6 Estimated results with different prior spact
Similarly, Gaussian white noises with levels of 13%, 5% and 10% are added to the transmission
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data. The estimated results are shown in Fig. @lidbiaryD,, is used for sparse representation. Noises
can be well suppressed. Acceptable accuracy casbtagned (MSE<0.05) with 10% Gaussian white
noises added, shown in Fig. 7 (d).
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Fig. 7 Estimated results with different levels oises
Dictionary D,s with multiple prior information is tested. The itvlag spectra are X-ray spectra
simulated with the accelerating voltages of 140135 kV, 130 kV, 120 kV, 110 kV and 100 kV. X-ray
spectra simulated with the accelerating voltages3&f kV, 120 kV, 110 kV and 100 kV are tested. 3%
Gaussian noises are added to the transmissionTdaastimated results are shown in Fig. 8.
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(c) 110 kV (MSE: 0.0076) (d) 100 kV (MSE: 0.0081)
Fig. 8 Estimated results with multiple prior spectr
As is shown in Fig. 8, estimated results with atalle accuracies can be obtained for their prior
information are included in the training matrix. ki the estimation for X-ray spectrum of
mammographic imaging, X-ray spectrum of CT can dlsestimated with acceptable accuracies with
the estimation method proposed in Part 2.

4. Discussion and conclusion

A new estimation method based on compressed sefwiixgray spectrum estimation is proposed in
this paper. The prior spectra are used as traisamgples of the dictionary for sparse representation
K-SVD algorithm is applied for dictionary learninGonvex relaxation is used for reconstruction by
transformingL, norm problem into the Lasso problem. An algorithrogmsed by Rosset and Zhu is
applied for solving Lasso, non-negative constraamesenforced by the modification of the Rosset and
Zhu’s algorithm. The estimation method is demonstran simulated spectra typical of mammography
and CT, which are obtained with the Monte CarloecGeant4.

As to the highly ill conditioned and under deteredrproblem of X-ray spectrum estimation, results
with better accuracies are obtained with prior kisglge. The method has a good ability of suppressing
noises. Results with acceptable accuracies (MS®)can be obtained with 1% Gaussian white noises
added to the simulated experimental data, botXfmy spectra of mammographic imaging and CT.

The biggest difference between the method proposehis paper and the existing methods is the
use of the prior knowledge. As to the existing roe#f) prior knowledge is used as the initial gudss o
the algorithm; while the method proposed in thipgrauses the prior knowledge as the training
samples for sparse representation. The advantatigésafnethod is that multiple prior knowledge can
be included in one dictionary for sparse represemawhich is meaningful for obtaining the true
X-ray spectrum from the measurements.
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