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Abstract: A new method of X-ray source spectrum estimation based on compressed sensing is 

proposed in this paper. The algorithm K-SVD is applied for sparse representation. Nonnegative 

constraints are added by modifying the L1 reconstruction algorithm proposed by Rosset and Zhu. The 

estimation method is demonstrated on simulated spectra typical of mammography and CT. X-ray 

spectra are simulated with the Monte Carlo code Geant4. The proposed method is successfully applied 

to highly ill conditioned and under determined estimation problems with a good performance of 

suppressing noises. Results with acceptable accuracies (MSE < 5%) can be obtained with 10% 

Gaussian white noises added to the simulated experimental data. The biggest difference between the 

proposed method and the existing methods is that multiple prior knowledge of X-ray spectra can be 

included in one dictionary, which is meaningful for obtaining the true X-ray spectrum from the 

measurements. 

Keywords: X-ray source spectrum estimation; transmission measurements; compressed sensing and 

sparse representation  

 

1. Introduction 

Knowledge of X-ray spectrum is very important for determining the radiation dose, reducing 

beam-hardening artifacts, and dual-energy material decomposition analysis of diagnostic X-ray 

imaging and CT [1-2]. It is difficult to measure spectrum from the X-ray tube directly due to the high 

source intensity. The transmission method, which involves a phantom of known dimensions and 

compositions, is widely used for X-ray spectrum determination for its simplicity and adaptability to a 

large energy range of X-ray [3-4]. The penetration rate p of polychromatic X-rays through the material 

with thickness L can be formulized as [4], 
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where Noisep  is the noise added to p in the experimental filed; I0 and I are incident and transmitted 

photon intensities; W(E) denotes the overall spectrum, which combines the X-ray source spectrum s(E) 

and the detector response D(E).  

  Eq. (1) can be converted into a linear system by discretization,  
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where 
qε  is the noise term of the experimental data; M is the total number of measurements; N is the 

number of samplings of the spectrum; A is the measurement matrix calculated from the linear 

attenuation coefficients and thickness of the phantom, and wp is the spectrum sampling. 

  To make it easier to discuss, Eq. (2) is written in the matrix form,  

P AWε± =                                  (3) 

where P is a M×1 vector consisting of the transmission data; ε is a M×1 vector consisting of the noise 

term of the experimental data; A is the measurement matrix with dimension of M×N ; and W is a N×1 

vector consisting of the spectrum sampling.  

Normally, M is of the order of dozens and N is of the order of hundreds, which makes the X-ray 

estimation problem stated in Eq. (3) is not only ill conditioned, but also under-determined. Some 

numerical methods have been proposed and applied to this problem. One of them is the EM 

(expectation-maximization) method. The EM method minimizes the Kullbeck-Liebler distance to the 

transmission data. The positivity of the solution is automatically enforced and the prior information is 

often used as the initial guess [5]. The current methods, including the EM method, focus mainly on the 

illness condition of the problem. The prior information is often used as the initial guess to start the 

algorithm. Therefore, only single prior information can be used in one estimation. However, there 

might be multiple guesses or predictions of the spectrum to be estimated. These guesses or predictions 

can all be used as prior information. Therefore, it is quite necessary to develop new estimation method 

which not only focuses on the illness condition of the problem, but also on new ways of using the prior 

information. 

Compressed sensing (CS) theory, proposed by Donoho, T. Tao and Candes, is a new method to 

reconstruct signals from significantly fewer samplings. The CS theory is considered as a breakthrough 

of the Nyquist-Shannon sampling theory and is widely used in areas of medical imaging, analog-digital 

conversion, computational biology and other aspects [6-8]. The CS theory claims that the unique 

solution can be obtained for the under determined problem on some certain conditions.  

In this paper, CS theory is introduced to solve the under determined problem stated in Eq. (3). Part 2 

presents the model, introducing CS theory to the X-ray spectrum estimation problem. Part 3 applies the 

method discussed in Part 2 to simulated transmission measurements. X-ray spectra with an energy 

range of mammography imaging and energy range of CT are estimated respectively. Performances of 

the method are evaluated, including the dependence on the prior information, noise suppression ability, 

and the ability of using multiple prior information. 

 

2. The estimation method based on compressed sensing 

2.1. Estimation model 

  As is discussed in part 1, the X-ray spectrum estimation problem stated in Eq. (3) is under 

determined so there is no unique solution. However, according to the CS theory, the unique solution 

can be obtained as long as the X-ray spectrum W is sparse (usually not) or can be presented sparsely by 
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a linear combination of a complete basis, shown in Eq. (4), 

W β= Ψ                                   (4) 

where Ψ is a sparse basis matrix, which is also called the dictionary. The representative stated in Eq. (4) 

is called a kind of sparse representation, through which β is sparse and the problem has the unique 

solution. 

  With the appropriate dictionary Ψ and substituting Eq. (4) into Eq. (3), then we have, 

P Xε β± =                                    (5) 

where X equals AΨ. Then the unique solution can be obtained by solving Eq. (5), which is equivalent 

to, 

2

0 2
ˆ argmin . .s t P X

β
β β β ε= − ≤                     (6) 

where 
0

⋅ denotes the L0 norm, which represents the number of non-zero entries.  

Solving Eq. (6) is called reconstruction. Finally, the X-ray spectrum can be obtained with appropriate 

β, shown by Eq. (7), 

ˆŴ β=Ψ                                   (7) 

2.2. Sparse representation of X-ray spectrum 

As discussed, the unique solution can be obtained as long as W can be represented sparsely. So 

choice of the dictionary is very important. Fourier basis, discrete cosine basis, and discrete wavelet 

basis are widely used for sparse representation in image processing and other aspects for their 

mathematical completeness and easy to implement [9]. However, these methods are not adaptive and 

not suitable for spectra estimation. Therefore, the dictionary based on learning is considered. Given a 

set of training samples { } 1

N

i i
Y y

=
= , the dictionary D is searching for the best representation, as is 

shown in Eq. (8), 
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where α is sparse coefficient and t is the sparsity, namely the number of nonzero entries of α.  

To obtain dictionary D requires two processes: sparse coding and dictionary update. Sparse coding is 

the process of computing the representation coefficients based on the given samples and the dictionary 

D. This process, commonly referred to as “atom de-composition”, requires solving the following 

equation,  

2
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α α ≤                         (9) 

The dictionary update process is as follows: assume both α and D are fixed. Consider dk (one column 

in D) and the corresponding coefficient αk (the kth row in α), the penalty term can be written as Eq. 

(10), 
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The K-SVD algorithm, which is a generalization of K-means (developed by Michal Aharon et al) 

[10], is applied to update the learning dictionary in this paper. The K-SVD algorithm uses orthogonal 

matching pursuit (OMP) algorithm, which is a greedy algorithm that selects the dictionary atoms 

sequentially, involving computation of inner products between the signal and dictionary columns, 

deploying least squares solvers for sparse coding [11], and SVD decomposition of Ek is used to update 

the dictionary. For the SVD decomposition finds the closest rank-1 matrix that approximates Ek, which 

can minimizes Eq. (10) effectively. Restrictions on matrix Y, D, and αk are applied for enforcing the 

sparsity constraints. 

 

2.3. The reconstruction algorithm 

Direct solution of Eq. (6) proves to be NP-hard. A common solution is convex relaxation which 

relaxes the L0 norm to the L1 norm, shown in Eq. (11), 

2

1 2
min . .s t P Xβ β ε− ≤                        (11)

 

Eq. (11) can be written as Lagrange multiplier, 

( ) 2

2 1
ˆ argmin P X

β
β λ β λ β= − +

                    
(12) 

Eq. (12) is the famous Lasso (least absolute shrinkage and selection operator) model, which consists 

of a least square estimate and a L1 norm penalty. The parameter λ denotes the penalty factor which can 

be deemed as the weight between cost function and the penalty term.  

A number of algorithms have been proposed for lasso solution. The algorithm used in this paper is 

mainly based on the Matlab tool spaSM [12], which is based on the method proposed by Rosset and 

Zhu [13]. The algorithm uses Taylor expansions of the norm equations of the minimization problem 

stated in Eq. (12) to get β∇ , shown in Eq. (13), 

( ) ( ) ( )( )1Tˆ ˆ2X X signβ λ β λ
−

∇ = − ⋅A A A
                 (13) 

where A  is called the active set, denoting indices in β corresponding to non-zero elements. 

Eq. (12) is rewritten with expanded set of β values like j j jβ β β+ −= + , where 0jβ + ≥  and 

0jβ − ≥ , j∀ . Considering the Karush-Kuhn-Tucker conditions of the optimization problem, the 

properties of the distance γ can be obtained, shown in Eq. (14) and Eq. (15) [12], 

( ) ( )ˆ ˆ: 0,k k
j jj jβ γ β∈ → + ∇ = ∈A T A                    (14) 

( ) ( )( )( ) ( ) ( )( )( )ˆ ˆ ˆ ˆ: , ,k k k k

i j
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where T is called the inactive set and denotes the complement of A . Eq. (14) defines the distances 
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{ }γ  at which active variables hit zero and join T . Eq. (15) defines the distances at which inactive 

variables join A . The smallest value minγ  is where the next event will happen.  

With β∇  obtained in Eq. (13) and γ  obtained in Eq. (14) and Eq. (15), the coefficients can be 

updated by, 

( ) ( ) ( )1
min

ˆ ˆ ˆk k kβ β γ β+ = + ∇                           (16) 

The algorithm proposed by Rosset and Zhu can solve the lasso problem with high efficiency and 

accuracy, as well as has the ability to suppress the noises. The only drawback is that it does not enforce 

the non-negativity. So the method is modified in this paper. The modification is simple, by which the 

negative entries of W in Eq. (7) are set to be zeros to make sure entries of the final estimated X-ray 

spectra (stated in Eq. (7)) are non-negative. The flow chart of the modified LASSO algorithm is 

illustrated in Fig. 1. Steps 13 to 16 are the modified steps. 

 
Fig. 1 LASSO algorithm modified with non-negative modification 

It is obvious to see from Eq. (12) that the accuracy of the reconstruction is highly depended on the 

value of λ. The larger the value of λ is, the sparser coefficient vector β is; while the smaller the value of 

λ is, the more convex the reconstruction process is, which leads to higher accuracy of the 

reconstruction. There are some criteria for trading off the sparsity and the accuracy, such as the 

Akaike’s Information Criterion (AIC), Bayesian Information Criterion (BIC) and so on. In this paper, 

the AIC criterion is applied.    

The AIC of the kth iteration can be defined as [14], 

( ) ( ) ( )2
22k k kAIC P X dfβ σ= − +                      (17) 

where df(k) is the degree of freedom, which is given by the number of non-zero elements of β; and 
2σ  

represents the residual variance which can be defined as, 

22 1
P X P

n
σ += −

               
             (18) 

where X+ is the Moore-Penrose pseudo-inverse of X. 
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3. Simulation studies 

3.1. Monte Carlo simulation of the source spectrum 

  X-ray spectra with an energy range of mammographic imaging and energy range of CT are both 

studied in this section. In mammographic imaging, the X-ray energies are generally on the lower end of 

the diagnostic imaging range, so the simulation considers X-rays generated by Mo (molybdenum) 

source and filtered by half a millimeter of aluminum; while in CT application, the subjects often have 

higher X-ray attenuation, therefore the simulation considers X-rays generated by W (tungsten) source 

and filtered by 1 cm of aluminum.  

  The X-ray source spectra used in this paper are all simulated with the Monte Carlo toolkit Geant4 

[16-17]. The “G4UAtomicDeexcitation” class is implemented for simulating the production of X-rays 

by electron source, and the standard EM (Electro-Magnetic) package is used for photo-electric effect 

and Compton scattering of X-rays. Threshold cuts of 0 µm is applied for both electrons and X-rays, 

corresponding to energy cuts of 990 eV in molybdenum, aluminum, and tungsten. The simulation 

results of X-rays generated by Mo source with accelerating voltage of 25 kV and X-rays generated by 

W source with accelerating voltage of 140 kV are shown in Fig. 2. The peaks in the spectrum are 

characteristic lines of Mo (17.443 keV and 19.633 keV, shown in Fig. 2a), and the characteristic lines 

of W (58.5 keV and 61.7 keV, shown in Fig. 2b). 

 

            (a) X-rays generated by Mo source          (b) X-rays generated by W source 

Fig. 2 X-ray source spectra obtained with Geant4 simulation 

The energy range of X-ray photons for mammographic imaging is from 3.5 keV to 25 keV, and the 

energy range of X-ray photons for CT is from 9 keV to 141 keV. There are 140 energy bins for both 

mammographic imaging and CT. The X-ray spectra shown in Fig. 2 are used as the test spectra to be 

estimated in this paper. 

 

3.2. Design of the measurement matrix 

The measurement matrix is obtained through two step-wedge phantoms. Materials for the phantoms 

are aluminum (Al) and carbon (C) for their different attenuation levels. Description of the step 

phantoms is listed in Table 1.   

Table 1. Technical description of step phantoms 

Phantom material Mass density 

(g/cm3) 

Number of steps Minimum thickness 

(cm) 

Maximum thickness 

(cm) 

Aluminum 2.7 20 0.127 2.54 

Carbon 1.6825 20 0.212 4.24 
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As is discussed above, for both the mammographic imaging and CT problem, there are 140 energy 

bins of X-ray spectrum and the number of equations is 40. The problem is highly under determined and 

ill conditioned. The condition number of the system matrix A are in a magnitude of 1021 (for 

mammographic imaging) and 1024 (for CT). The following part of this paper is the application of the 

estimation method discussed in Part 2 to X-ray estimation of mammographic imaging and CT.  

 

3.3. The estimation results 

3.3.1. Results of the mammographic spectrum 

As is discussed above, the X-ray spectrum estimation problem is an under determined and there must 

be prior information to get the desired solution. To study the dependence of the estimation accuracy on 

the prior information, 4 dictionaries D11, D12, D13, and D14 are tested respectively. The corresponding 

training spectra are X-ray spectra simulated with the accelerating voltages of 25 kV, 24 kV, 23 kV and 

22 kV. The estimation results are illustrated in Fig. 2. The accuracy of the estimation is evaluated by 

MSE (Mean Square Error), which is described in Eq. (19), 

( )2Estimated Exact

1

MSE=
N

i i
i

W W
=

−∑                         (19) 

The X-ray spectrum can be estimated almost exactly while it can be represented sparsely enough, 

shown in Fig. 2 (a). The accuracy drops while the prior spectrum deviates from the spectrum to be 

estimated. However, estimated results with acceptable accuracies can be obtained with sufficient prior 

information. 

 

                  (a) D11 (MSE: 1.4969E-9)           (b) D12 (MSE: 0.0111) 

 

                   (c) D13 (MSE: 0.0323)             (d) D14 (MSE: 0.0515) 

Fig. 3 Estimated results with different prior spectra  

Normally, the transmission data are always contaminated by the noises of the experimental ground, 

which causes difficulty of the estimation. To study the noise suppression ability of the method, 

estimation is carried out with 1%, 3%, 5%, and 10% Gaussian white noises added to the transmission 

data. Dictionary D12 is used for sparse representation. The estimated results are shown in Fig. 4. While 
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the accuracy drops as the level of noise grows, the estimation method has a strong ability to suppress 

noises. The X-ray spectrum can still be estimated with an acceptable accuracy (MSE<0.05) with 10% 

Gaussian white noises added, shown in Fig. 4 (d).  

 

              (a) 1% Gaussian white noise           (b) 3% Gaussian white noise 

MSE: 0.0129                        MSE: 0.0131 

 
                 (c) 5% Gaussian white noise         (d) 10% Gaussian white noise 

MSE: 0.0132                     MSE: 0.0415       

Fig. 4 Estimated results with different levels of noises 

The biggest difference between the estimation method proposed in this paper and the existing 

estimation methods is the way using prior information. The current methods use the prior information 

as the initial guess to start the algorithm. While the method proposed in this paper uses the prior 

information as the training samples for sparse representation, which allows use of multiple prior 

information. To verify this, estimation is carried out and the estimated results are shown in Fig. 5. The 

dictionary D15 is used for sparse representation. Dictionary D15 is obtained by the K-SVD algorithm 

illustrated in Part 2 with X-ray spectra simulated with the accelerating voltages of 25 kV, 24 kV, 23 kV, 

22 kV, 20 kV and 18 kV respectively. The estimation is carried out with 3% Gaussian white noises 

added to the transmission data. The test spectra are X-ray spectra simulated with the accelerating 

voltages of 24 kV, 23 kV, 22 kV and 20 kV respectively.  
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              (a) 24 kV (MSE: 0.0031)                 (b) 23 kV (MSE: 0.0129) 

 
               (c) 22 kV (MSE: 0.0168)               (d) 20 kV (MSE: 0.0069) 

Fig. 5 Estimated results with multiple prior spectra 

As is shown in Fig. 5, estimated results with acceptable accuracies can be obtained for their prior 

information are included in the training matrix. This is quite meaningful for multiple prior information 

can be included on one dictionary for sparse representation.  

 

3.3.2. Results of the CT spectrum 

As is discussed in the former part, the estimation method discussed in Part 2 can be successfully 

applied to X-ray spectrum estimation for mammographic imaging application. However, the X-ray 

spectrum in CT application is quite different both in spectrum shape and energy range of X-rays. To 

study the adaptability of the estimation method, the X-ray spectrum of CT application is tested for 

estimation. Firstly, 4 dictionaries D21, D22, D23, and D24 are tested respectively. The corresponding 

training spectra are X-ray spectra simulated with the accelerating voltages of 140 kV, 130 kV, 120 kV 

and 110 kV. The estimated results are shown in Fig. 6. 

 

                  (a) D21 (MSE: 2.0421E-9)           (b) D22 (MSE: 0.0109) 

 

                  (c) D23 (MSE: 0.0336)             (d) D23 (MSE: 0.0419) 

Fig. 6 Estimated results with different prior spectra  

Similarly, Gaussian white noises with levels of 1%, 3%, 5% and 10% are added to the transmission 
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data. The estimated results are shown in Fig. 7. Dictionary D22 is used for sparse representation. Noises 

can be well suppressed. Acceptable accuracy can be obtained (MSE<0.05) with 10% Gaussian white 

noises added, shown in Fig. 7 (d).  

 

                  (a) 1% (MSE: 0.0172)             (b) 3% (MSE: 0.0270) 

 

                   (c) 5% (MSE: 0.0379)           (d) 10% (MSE: 0.0455) 

Fig. 7 Estimated results with different levels of noises 

Dictionary D25 with multiple prior information is tested. The training spectra are X-ray spectra 

simulated with the accelerating voltages of 140 kV, 135 kV, 130 kV, 120 kV, 110 kV and 100 kV. X-ray 

spectra simulated with the accelerating voltages of 130 kV, 120 kV, 110 kV and 100 kV are tested. 3% 

Gaussian noises are added to the transmission data. The estimated results are shown in Fig. 8.  

 
                 (a) 130 kV (MSE: 0.0151)          (b) 120 kV (MSE: 0.0054) 
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                 (c) 110 kV (MSE: 0.0076)          (d) 100 kV (MSE: 0.0081)  

Fig. 8 Estimated results with multiple prior spectra 

As is shown in Fig. 8, estimated results with acceptable accuracies can be obtained for their prior 

information are included in the training matrix. Like the estimation for X-ray spectrum of 

mammographic imaging, X-ray spectrum of CT can also be estimated with acceptable accuracies with 

the estimation method proposed in Part 2. 

 

4. Discussion and conclusion 

A new estimation method based on compressed sensing for X-ray spectrum estimation is proposed in 

this paper. The prior spectra are used as training samples of the dictionary for sparse representation. 

K-SVD algorithm is applied for dictionary learning. Convex relaxation is used for reconstruction by 

transforming L0 norm problem into the Lasso problem. An algorithm proposed by Rosset and Zhu is 

applied for solving Lasso, non-negative constraints are enforced by the modification of the Rosset and 

Zhu’s algorithm. The estimation method is demonstrated on simulated spectra typical of mammography 

and CT, which are obtained with the Monte Carlo code Geant4.  

As to the highly ill conditioned and under determined problem of X-ray spectrum estimation, results 

with better accuracies are obtained with prior knowledge. The method has a good ability of suppressing 

noises. Results with acceptable accuracies (MSE < 5%) can be obtained with 1% Gaussian white noises 

added to the simulated experimental data, both for X-ray spectra of mammographic imaging and CT.      

The biggest difference between the method proposed in this paper and the existing methods is the 

use of the prior knowledge. As to the existing methods, prior knowledge is used as the initial guess of 

the algorithm; while the method proposed in this paper uses the prior knowledge as the training 

samples for sparse representation. The advantage of this method is that multiple prior knowledge can 

be included in one dictionary for sparse representation, which is meaningful for obtaining the true 

X-ray spectrum from the measurements. 
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